mBio DOI: 10.1128/mbio.03196-19
|
Sign up to set email alerts
|
Bernard Berger
1
,
Nadine Porta
2
,
Francis Foata
3
et al.
Abstract: Human milk oligosaccharides (HMOs) may provide health benefits to infants partly by shaping the development of the early-life intestinal microbiota. In a randomized double-blinded controlled multicentric clinical trial, healthy term infants received either infant formula (control) or the same formula with two HMOs (2′-fucosyllactose and lacto-N-neotetraose; test) from enrollment (0 to 14 days) to 6 months. Then, all infants received the same follow-up formula without HMOs until 12 months of age. Breastfed infa… Show more
Search citation statements
Order By:
Relevance
Paper Sections
Select...
2
1
1
1
Citation Types
7
156
3
3
Year Published
2020
20202023
2023
Publication Types
Select...
4
4
1
Relationship
1
8
Authors
Journals
Cited by 142 publications
(
169
citation statement
s
)
References 92 publications
(
76
reference statement
s
)
7
156
3
3
Order By:
Relevance
“…Omega-3 PUFAs are reported to impact the gut ecosystem [26,27]. Milk oligosaccharides favor the development of a bifidobacteria-dominated gut microbiota, as observed in breastfed infants [14,28,29].…”
Section: Introductionmentioning confidence: 93%
Castanet
1
,
Costalos
2
,
Haiden
3
et al. 2020
Nutrients Self Cite
Background: Post-natal gut maturation in infants interrelates maturation of the morphology, digestive, and immunological functions and gut microbiota development. Here, we explored both microbiota development and markers of gut barrier and maturation in healthy term infants during their early life to assess the interconnection of gut functions during different infant formulae regimes. Methods: A total of 203 infants were enrolled in this randomized double-blind controlled trial including a breastfed reference group. Infants were fed starter formulae for the first four weeks of life, supplemented with different combination of nutrients (lactoferrin, probiotics (Bifidobacterium animal subsp. Lactis) and prebiotics (Bovine Milk-derived Oligosaccharides—BMOS)) and subsequently fed the control formula up to eight weeks of life. Stool microbiota profiles and biomarkers of early gut maturation, calprotectin (primary outcome), elastase, α-1 antitrypsin (AAT) and neopterin were measured in feces at one, two, four, and eight weeks. Results: Infants fed formula containing BMOS had lower mean calprotectin levels over the first two to four weeks compared to the other formula groups. Elastase and AAT levels were closer to levels observed in breastfed infants. No differences were observed for neopterin. Global differences between the bacterial communities of all groups were assessed by constrained multivariate analysis with hypothesis testing. The canonical correspondence analysis (CCA) at genus level showed overlap between microbiota profiles at one and four weeks of age in the BMOS supplemented formula group with the breastfed reference, dominated by bifidobacteria. Microbiota profiles of all groups at four weeks were significantly associated with the calprotectin levels at 4 (CCA, p = 0.018) and eight weeks of age (CCA, p = 0.026). Conclusion: A meaningful correlation was observed between changes in microbiota composition and gut maturation marker calprotectin. The supplementation with BMOS seems to favor gut maturation closer to that of breastfed infants.
“…Omega-3 PUFAs are reported to impact the gut ecosystem [26,27]. Milk oligosaccharides favor the development of a bifidobacteria-dominated gut microbiota, as observed in breastfed infants [14,28,29].…”
Section: Introductionmentioning confidence: 93%
Castanet
1
,
Costalos
2
,
Haiden
3
et al. 2020
Nutrients Self Cite
Background: Post-natal gut maturation in infants interrelates maturation of the morphology, digestive, and immunological functions and gut microbiota development. Here, we explored both microbiota development and markers of gut barrier and maturation in healthy term infants during their early life to assess the interconnection of gut functions during different infant formulae regimes. Methods: A total of 203 infants were enrolled in this randomized double-blind controlled trial including a breastfed reference group. Infants were fed starter formulae for the first four weeks of life, supplemented with different combination of nutrients (lactoferrin, probiotics (Bifidobacterium animal subsp. Lactis) and prebiotics (Bovine Milk-derived Oligosaccharides—BMOS)) and subsequently fed the control formula up to eight weeks of life. Stool microbiota profiles and biomarkers of early gut maturation, calprotectin (primary outcome), elastase, α-1 antitrypsin (AAT) and neopterin were measured in feces at one, two, four, and eight weeks. Results: Infants fed formula containing BMOS had lower mean calprotectin levels over the first two to four weeks compared to the other formula groups. Elastase and AAT levels were closer to levels observed in breastfed infants. No differences were observed for neopterin. Global differences between the bacterial communities of all groups were assessed by constrained multivariate analysis with hypothesis testing. The canonical correspondence analysis (CCA) at genus level showed overlap between microbiota profiles at one and four weeks of age in the BMOS supplemented formula group with the breastfed reference, dominated by bifidobacteria. Microbiota profiles of all groups at four weeks were significantly associated with the calprotectin levels at 4 (CCA, p = 0.018) and eight weeks of age (CCA, p = 0.026). Conclusion: A meaningful correlation was observed between changes in microbiota composition and gut maturation marker calprotectin. The supplementation with BMOS seems to favor gut maturation closer to that of breastfed infants.
“…An intervention with HMO and 2′FL respectively showed an increase of Actinobacteria in fecal [ 159 ] samples and in a semi-continuous colon simulator model that was accounted for by a decrease of Proteobacteria in the latter study [ 160 ]. Notably, a microbiota shift towards probiotic dominance was recently achieved by feeding infants with 2′FL/LNnT-supplemented formula for 6 months [ 161 ] and even in healthy adults that received 2′FL and/or LNnT for only two weeks [ 162 ]. Taking these results together, it appears that Secretor milk is more beneficial for bifidobacterial growth than non-Secretor milk.…”
Section: Hmos Shaping the Neonatementioning confidence: 99%
Hundshammer
1
,
Minge
2
2020
Nutrients
Human milk oligosaccharides (HMOs) are structurally versatile sugar molecules constituting the third major group of soluble components in human breast milk. Based on the disaccharide lactose, the mammary glands of future and lactating mothers produce a few hundreds of different HMOs implicating that their overall anabolism utilizes rather high amounts of energy. At first sight, it therefore seems contradictory that these sugars are indigestible for infants raising the question of why such an energy-intensive molecular class evolved. However, in-depth analysis of their molecular modes of action reveals that Mother Nature created HMOs for neonatal development, protection and promotion of health. This is not solely facilitated by HMOs in their indigestible form but also by catabolites that are generated by microbial metabolism in the neonatal gut additionally qualifying HMOs as natural prebiotics. This narrative review elucidates factors influencing the HMO composition as well as physiological roles of HMOs on their way through the infant body and within the gut, where a major portion of HMOs faces microbial catabolism. Concurrently, this work summarizes in vitro, preclinical and observational as well as interventional clinical studies that analyzed potential health effects that have been demonstrated by or were related to either human milk-derived or synthetic HMOs or HMO fractions.
“…Among the synthetized HMOs, 2′-FL and lacto- N -neotetraose (LNnT) are widely studied and are considered safe for infant nutrition. Fecal microbiota composition of 2′-FL- and LNnT-supplemented formula-fed infants was more similar to that of breastfed infants, in terms of microbial diversity, global composition at the genus level, and abundance of several major genera than that of infants fed a non-supplemented formula ( 64 , 164 , 165 ). Moreover, 2′-FL and LNnT supplementation was associated with lower prescription of antibiotics during the first year of life, although fecal microbiota profiles no longer differed between supplemented and non-supplemented infants at 12 months of age ( 165 ).…”
Section: Role Of the Different Breast Milk Components In Shaping The mentioning confidence: 87%
“…Fecal microbiota composition of 2 ′ -FL-and LNnT-supplemented formula-fed infants was more similar to that of breastfed infants, in terms of microbial diversity, global composition at the genus level, and abundance of several major genera than that of infants fed a non-supplemented formula (64,164,165). Moreover, 2 ′ -FL and LNnT supplementation was associated with lower prescription of antibiotics during the first year of life, although fecal microbiota profiles no longer differed between supplemented and non-supplemented infants at 12 months of age (165). Likewise, sialic acid is known to be an essential nutrient during periods of rapid neural growth and brain development in the newborn (166).…”
Section: Role Of the Different Breast Milk Components In Shaping Thementioning confidence: 91%
Boudry
1
,
Charton
2
,
Huërou‐Luron
3
et al. 2021
Front. Nutr.
The assembly of the newborn's gut microbiota during the first months of life is an orchestrated process resulting in specialized microbial ecosystems in the different gut compartments. This process is highly dependent upon environmental factors, and many evidences suggest that early bacterial gut colonization has long-term consequences on host digestive and immune homeostasis but also metabolism and behavior. The early life period is therefore a “window of opportunity” to program health through microbiota modulation. However, the implementation of this promising strategy requires an in-depth understanding of the mechanisms governing gut microbiota assembly. Breastfeeding has been associated with a healthy microbiota in infants. Human milk is a complex food matrix, with numerous components that potentially influence the infant microbiota composition, either by enhancing specific bacteria growth or by limiting the growth of others. The objective of this review is to describe human milk composition and to discuss the established or purported roles of human milk components upon gut microbiota establishment. Finally, the impact of maternal diet on human milk composition is reviewed to assess how maternal diet could be a simple and efficient approach to shape the infant gut microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
Contact Info
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Product
Browser ExtensionAssistant by sciteCitation Statement SearchReference CheckVisualizationsDashboardsExplore JournalsExplore OrganizationsExplore FundersEmbedding BadgeEmbedding Citation SearchPricing
Resources
BlogHelp & FAQAccessibility StatementAPI TermsFor ResearchersFor PublishersAuthor MarketingBecome an AffiliateGet an organization trial or quote
About
CareersRead our PaperCoverage
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.