9.7: The Laplace Equation (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    90438
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The diffusion equation in two spatial dimensions is \[u_t=D(u_{xx}+u_{yy}).\nonumber\]

    The steady-state solution, approached asymptotically in time, has \(u_t = 0\) so that the steady-state solution \(u = u(x, y)\) satisfies the two-dimensional Laplace equation \[\label{eq:1}u_{xx}+u_{yy}=0.\]

    We will consider the mathematical problem of solving the two dimensional Laplace equation inside a rectangular or a circular boundary. The value of \(u(x, y)\) will be specified on the boundaries, defining this problem to be of Dirichlet type.

    Dirichlet Problem for a Rectangle

    9.7: The Laplace Equation (2)

    We consider the Laplace equation \(\eqref{eq:1}\) for the interior of a rectangle \(0 < x < a\), \(0 < y < b\), (see Fig. \(\PageIndex{1}\)), with boundary conditions \[\begin{array}{lllll}u(x,0)=0, && u(x,b)=0, && 0<x<a; \\ u(0,y)=0, && u(a,y)=f(y),&& 0\leq y\leq b.\end{array}\nonumber\]

    More general boundary conditions can be solved by linear superposition of solutions.

    We take our usual ansatz \[u(x,y)=X(x)Y(y),\nonumber\] and find after substitution into \(\eqref{eq:1}\), \[\frac{X''}{X}=-\frac{Y''}{Y}=\lambda,\nonumber\] with \(\lambda\) the separation constant. We thus obtain the two ordinary differential equations \[X''-\lambda X=0,\quad Y''+\lambda Y=0.\nonumber\]

    The hom*ogeneous boundary conditions are \(X(0) = 0,\: Y(0) = 0\) and \(Y(b) = 0\). We have already solved the equation for \(Y(y)\) in §9.5, and the solution yields the eigenvalues \[\lambda_n=\left(\frac{n\pi}{b}\right)^2,\quad n=1,2,3,\ldots ,\nonumber\] with corresponding eigenfunctions \[Y_n(y)=\sin\frac{n\pi y}{b}.\nonumber\]

    The remaining \(X\) equation and hom*ogeneous boundary condition is therefore \[X''-\frac{n^2\pi^2}{b^2}X=0,\quad X(0)=0,\nonumber\] and the solution is the hyperbolic sine function \[X_n(x)=\sinh\frac{n\pi x}{b},\nonumber\] times a constant. Writing \(u_n = X_nY_n\), multiplying by a constant and summing over \(n\), yields the general solution \[u(x,y)=\sum\limits_{n=0}^\infty c_n\sinh\frac{n\pi x}{b}\sinh\frac{n\pi y}{b}.\nonumber\]

    The remaining inhom*ogeneous boundary condition \(u(a, y) = f(y)\) results in \[f(y)=\sum\limits_{n=0}^\infty c_n\sinh\frac{n\pi a}{b}\sin\frac{n\pi y}{b},\nonumber\] which we recognize as a Fourier sine series for an odd function with period \(2b\), and coefficient \(c_n \sinh (n\pi a/b)\). The solution for the coefficient is given by \[c_n=\frac{2}{b\sinh\frac{n\pi a}{b}}\int_0^b f(y)\sin\frac{n\pi y}{b}dy.\nonumber\]

    Dirichlet Problem for a Circle

    The Laplace equation is commonly written symbolically as \[\label{eq:2}\nabla ^2u=0,\] where \(\nabla^2\) is called the Laplacian, sometimes denoted as \(\Delta\). The Laplacian can be written in various coordinate systems, and the choice of coordinate systems usually depends on the geometry of the boundaries. Indeed, the Laplace equation is known to be separable in \(13\) different coordinate systems! We have solved the Laplace equation in two dimensions, with boundary conditions specified on a rectangle, using \[\nabla ^2=\frac{\partial ^2}{\partial x^2}+\frac{\partial ^2}{\partial y^2}.\nonumber\]

    Here we consider boundary conditions specified on a circle, and write the Laplacian in polar coordinates by changing variables from cartesian coordinates. Polar coordinates is defined by the transformation \((r,\theta )\to (x, y)\):

    \[\label{eq:3}x=r\cos\theta,\quad y=r\sin\theta ;\] and the chain rule gives for the partial derivatives \[\label{eq:4}\frac{\partial u}{\partial r}=\frac{\partial u}{\partial x}\frac{\partial x}{\partial r}+\frac{\partial u}{\partial y}\frac{\partial y}{\partial r},\quad \frac{\partial u}{\partial\theta}=\frac{\partial u}{\partial x}\frac{\partial x}{\partial\theta}+\frac{\partial u}{\partial y}\frac{\partial y}{\partial\theta}.\]

    After taking the partial derivatives of \(x\) and \(y\) using \(\eqref{eq:3}\), we can write the transformation \(\eqref{eq:4}\) in matrix form as \[\label{eq:5}\left(\begin{array}{c}\partial u/\partial r \\ \partial u/\partial\theta\end{array}\right)=\left(\begin{array}{rr}\cos\theta &\sin\theta \\ -r\sin\theta & r\cos\theta\end{array}\right)\left(\begin{array}{c}\partial u/\partial x \\ \partial u/\partial y\end{array}\right).\]

    Inversion of \(\eqref{eq:5}\) can be determined from the following result, commonly proved in a linear algebra class. If \[A=\left(\begin{array}{cc}a&b \\ c&d\end{array}\right),\quad\det A\neq 0,\nonumber\] then \[A^{-1}=\frac{1}{\det A}\left(\begin{array}{cc}d&-b \\ -c&a\end{array}\right).\nonumber\]

    Therefore, since the determinant of the \(2\times 2\) matrix in \(\eqref{eq:5}\) is \(r\), we have \[\label{eq:6}\left(\begin{array}{c}\partial u/\partial x \\ \partial u/\partial y\end{array}\right)=\left(\begin{array}{rr}\cos\theta &-\sin\theta /r \\ \sin\theta &\cos\theta /r\end{array}\right)\left(\begin{array}{c}\partial u/\partial r \\ \partial u/\partial\theta\end{array}\right).\]

    Rewriting \(\eqref{eq:6}\) in operator form, we have \[\label{eq:7}\frac{\partial}{\partial x}=\cos\theta\frac{\partial}{\partial r}-\frac{\sin\theta}{r}\frac{\partial}{\partial\theta},\quad\frac{\partial}{\partial y}=\sin\theta\frac{\partial}{\partial r}+\frac{\cos\theta}{r}\frac{\partial}{\partial\theta}.\]

    To find the Laplacian in polar coordinates with minimum algebra, we combine \(\eqref{eq:7}\) using complex variables as \[\label{eq:8}\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}=e^{i\theta}\left(\frac{\partial}{\partial r}+\frac{i}{r}\frac{\partial}{\partial\theta}\right),\] so that the Laplacian may be found by multiplying both sides of \(\eqref{eq:8}\) by its complex conjugate, taking care with the computation of the derivatives on the righthand-side:

    \[\begin{aligned}\frac{\partial ^2}{\partial x^2}+\frac{\partial ^2}{\partial y^2}&=e^{i\theta}\left(\frac{\partial}{\partial r}+\frac{i}{r}\frac{\partial}{\partial\theta}\right)e^{-i\theta}\left(\frac{\partial}{\partial r}-\frac{1}{r}\frac{\partial}{\partial\theta}\right) \\ &=\frac{\partial ^2}{\partial r^2}+\frac{1}{r}\frac{\partial }{\partial r}+\frac{1}{r^2}\frac{\partial ^2}{\partial\theta ^2}.\end{aligned}\]

    We have therefore determined that the Laplacian in polar coordinates is given by \[\label{eq:9}\nabla^2=\frac{\partial ^2}{\partial r^2}+\frac{1}{r}\frac{\partial }{\partial r}+\frac{1}{r^2}\frac{\partial ^2}{\partial\theta^2},\] which is sometimes written as \[\nabla^2 =\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\right)+\frac{1}{r^2}\frac{\partial ^2}{\partial\theta ^2}.\nonumber\]

    We now consider the solution of the Laplace equation in a circle with radius \(r < a\) subject to the boundary condition \[\label{eq:10}u(a,\theta )=f(\theta),\quad 0\leq\theta\leq 2\pi.\]

    An additional boundary condition due to the use of polar coordinates is that \(u(r, \theta )\) is periodic in \(\theta\) with period \(2\pi\). Furthermore, we will also assume that \(u(r, \theta )\) is finite within the circle.

    The method of separation of variables takes as our ansatz \[u(r,\theta )=R(r)\Theta (\theta ),\nonumber\] and substitution into the Laplace equation \(\eqref{eq:2}\) using \(\eqref{eq:9}\) yields \[R''\Theta +\frac{1}{r}R'\Theta +\frac{1}{r^2}R\Theta ''=0,\nonumber\] or \[r^2\frac{R''}{R}+r\frac{R'}{R}=-\frac{\Theta ''}{\Theta }=\lambda,\nonumber\] where \(\lambda\) is the separation constant. We thus obtain the two ordinary differential equations \[r^2R''+rR'-\lambda R=0,\quad \Theta ''+\lambda\Theta =0.\nonumber\]

    The \(\Theta\) equation is solved assuming periodic boundary conditions with period \(2\pi\). If \(\lambda < 0\), then no periodic solution exists. If \(\lambda = 0\), then \(\Theta\) can be constant. If \(\lambda = \mu^2 > 0\), then \[\Theta (\theta )=A\cos\mu\theta +B\sin\mu\theta ,\nonumber\] and the requirement that \(\Theta\) is periodic with period \(2\pi\) forces \(\mu\) to be an integer. Therefore, \[\lambda_n=n^2,\quad n=0,1,2,\ldots ,\nonumber\] with corresponding eigenfunctions \[\Theta_n(\theta )=A_n\cos n\theta +B_n\sin n\theta.\nonumber\]

    The \(R\) equation for each eigenvalue \(\lambda_n\) then becomes \[\label{eq:11}r^2R''+rR'-n^2R=0,\] which is an Euler equation. With the ansatz \(R = r^s\), \(\eqref{eq:11}\) reduces to the algebraic equation \(s(s − 1) + s − n^2 = 0\), or \(s^2 = n^2\). Therefore, \(s = ±n\), and there are two real solutions when \(n > 0\) and degenerate solutions when \(n = 0\). When \(n > 0\), the solution for \(R(r)\) is \[R_n(r)=Ar^n+Br^{-n}.\nonumber\]

    The requirement that \(u(r,\theta )\) is finite in the circle forces \(B = 0\) since \(r^{−n}\) becomes unbounded as \(r\to 0\). When \(n = 0\), the solution for \(R(r)\) is \[R_n(r)=A+B\ln r,\nonumber\] and again finite \(u\) in the circle forces \(B = 0\). Therefore, the solution for \(n = 0,\: 1,\: 2,\ldots\) is \(R_n = r^n\). Thus the general solution for \(u(r,\theta )\) may be written as \[\label{eq:12} u(r,\theta )=\frac{A_0}{2}+\sum\limits_{n=1}^\infty r^n (A_n\cos n\theta +B_n\sin n\theta ),\] where we have separated out the \(n = 0\) solution to write our solution in a form similar to the standard Fourier series given by (9.3.1). The remaining boundary condition \(\eqref{eq:10}\) specifies the values of u on the circle of radius a, and imposition of this boundary condition results in \[\label{eq:13} f(\theta )=\frac{A_0}{2}+\sum\limits_{n=1}^\infty a^n (A_n\cos n\theta +B_n\sin n\theta ).\]

    Equation \(\eqref{eq:13}\) is a Fourier series for the periodic function \(f(\theta )\) with period \(2\pi\), i.e., \(L = \pi\) in (9.3.1). The Fourier coefficients \(a^nA_n\) and \(a^nB_n\) are therefore given by (9.3.5) and (9.3.6) to be \[\begin{align} a^nA_n&=\frac{1}{\pi}\int_0^{2\pi} f(\phi )\cos n\phi d\phi, \quad n=0,1,2,\ldots ; \nonumber \\ a^nB_n&=\frac{1}{\pi}\int_0^{2\pi}f(\phi )\sin n\phi d\phi ,\quad n=1,2,3,\ldots ,\label{eq:14}\end{align}\] where we have used \(\phi\) for the dummy variable of integration.

    A remarkable fact is that the infinite series solution for \(u(r, \theta )\) can be summed explicitly. Substituting \(\eqref{eq:14}\) into \(\eqref{eq:12}\), we obtain \[\begin{aligned}u(r,\theta )&=\frac{1}{2\pi}\int_0^{2\pi}d\phi f(\phi )\left[ 1+2\sum\limits_{n=1}^\infty \left(\frac{r}{a}\right)^n (\cos n\theta\cos n\phi +\sin n\theta\sin n\phi )\right] \\ &=\frac{1}{2\pi}\int_0^{2\pi} d\phi f(\phi)\left[1+2\sum_{n=1}^\infty \left(\frac{r}{a}\right)^n\cos n(\theta -\phi)\right].\end{aligned}\]

    We can sum the infinite series by writing \(2 cos n(\theta − \phi ) = e^{in(\theta−\phi)} + e^{−in(\theta −\phi)}\), and using the sum of the geometric series \(\sum_{n=1}^\infty z^n = z/(1 − z)\) to obtain \[\begin{aligned} 1+2\sum\limits_{n=1}^\infty \left(\frac{r}{a}\right)^n\cos n(\theta -\phi)&=1+\sum\limits_{n=1}^\infty \left(\frac{re^{i(\theta -\phi)}}{a}\right)^n +\sum\limits_{n=1}^\infty \left(\frac{re^{-i(\theta -\phi )}}{a}\right)^n \\ &=1+\left(\frac{re^{i(\theta -\phi)}}{a-re^{i(\theta -\phi )}}+c.c.\right) \\ &=\frac{a^2-r^2}{a^2-2ar\cos (\theta -\phi )+r^2}.\end{aligned}\]

    Therefore, \[u(r,\theta )=\frac{a^2-r^2}{2\pi}\int_0^{2\pi}\frac{f(\phi )}{a^2-2ar\cos (\theta -\phi )+r^2}d\phi,\nonumber\] an integral result for \(u(r, \theta )\) known as Poisson’s formula. As a trivial example, consider the solution for \(u(r, \theta )\) if \(f(\theta ) = F\), a constant. Clearly, \(u(r, \theta ) = F\) satisfies both the Laplace equation and the boundary conditions so must be the solution. You can verify that \(u(r, \theta ) = F\) is indeed the solution by showing that \[\int_0^{2\pi}\frac{d\phi}{a^2-2ar\cos (\theta -\phi )+r^2}=\frac{2\pi }{a^2-r^2}.\nonumber\]

    9.7: The Laplace Equation (2024)

    References

    Top Articles
    Detailed Tier List: Accessories, Mounts, and Armor
    Full Game Accessory Tier List
    Chs.mywork
    Breaded Mushrooms
    Kaydengodly
    Craigslist Cars And Trucks For Sale By Owner Indianapolis
    25X11X10 Atv Tires Tractor Supply
    Activities and Experiments to Explore Photosynthesis in the Classroom - Project Learning Tree
    Richard Sambade Obituary
    Otr Cross Reference
    Summoner Class Calamity Guide
    Jvid Rina Sauce
    Leader Times Obituaries Liberal Ks
    Puretalkusa.com/Amac
    ARK: Survival Evolved Valguero Map Guide: Resource Locations, Bosses, & Dinos
    CANNABIS ONLINE DISPENSARY Promo Code — $100 Off 2024
    G Switch Unblocked Tyrone
    Labby Memorial Funeral Homes Leesville Obituaries
    What Is Vioc On Credit Card Statement
    Christina Steele And Nathaniel Hadley Novel
    Allentown Craigslist Heavy Equipment
    Azpeople View Paycheck/W2
    zom 100 mangadex - WebNovel
    The Ultimate Guide to Extras Casting: Everything You Need to Know - MyCastingFile
    Wbiw Weather Watchers
    Touchless Car Wash Schaumburg
    Sef2 Lewis Structure
    Craigslist Northfield Vt
    Construction Management Jumpstart 3Rd Edition Pdf Free Download
    Pawn Shop Moline Il
    Tokyo Spa Memphis Reviews
    Cal State Fullerton Titan Online
    Dairy Queen Lobby Hours
    Solarmovie Ma
    A Small Traveling Suitcase Figgerits
    Wbli Playlist
    Eleceed Mangaowl
    Vivek Flowers Chantilly
    Philadelphia Inquirer Obituaries This Week
    Davis Fire Friday live updates: Community meeting set for 7 p.m. with Lombardo
    sacramento for sale by owner "boats" - craigslist
    Fwpd Activity Log
    The Attleboro Sun Chronicle Obituaries
    Smite Builds Season 9
    Alpha Labs Male Enhancement – Complete Reviews And Guide
    Citroen | Skąd pobrać program do lexia diagbox?
    Pickwick Electric Power Outage
    Www Pig11 Net
    Random Warzone 2 Loadout Generator
    Evil Dead Rise - Everything You Need To Know
    Makes A Successful Catch Maybe Crossword Clue
    Where Is Darla-Jean Stanton Now
    Latest Posts
    Article information

    Author: Dr. Pierre Goyette

    Last Updated:

    Views: 6362

    Rating: 5 / 5 (70 voted)

    Reviews: 93% of readers found this page helpful

    Author information

    Name: Dr. Pierre Goyette

    Birthday: 1998-01-29

    Address: Apt. 611 3357 Yong Plain, West Audra, IL 70053

    Phone: +5819954278378

    Job: Construction Director

    Hobby: Embroidery, Creative writing, Shopping, Driving, Stand-up comedy, Coffee roasting, Scrapbooking

    Introduction: My name is Dr. Pierre Goyette, I am a enchanting, powerful, jolly, rich, graceful, colorful, zany person who loves writing and wants to share my knowledge and understanding with you.